FRP 防水層の硬化過程に生ずる収縮力の測定

不飽和ポリエステル樹脂	収縮力	液体
FRP 防水材	硬化	固体

1. はじめに

前報⁽¹⁾では FRP 防水層に用いられる不飽和ポリエステ ル樹脂に生じる収縮力を、液体状態から固体状態まで連 続して測定する方法を開発した。本稿では、その開発し た測定方法を用い、液体から固体へ硬化するまでの不飽 和ポリエステル樹脂の硬化収縮挙動を明らかにすること を目的とする。

2. 収縮力の測定装置

2.1 測定装置

前報で開発した装置では浮かせる液体に水銀を使用し たが、水銀は健康安全上に問題があるため、本稿では、 重鉱物の分離に使用されている無害の重液である比重約 3.0 のメタタングステン酸ソーダ [3Na2(WO4・9WO3)・ H20]を使用し、その上に樹脂と試験体枠を浮かせた。ま た、比重が水銀より小さいため、試験体枠も軽量とする 必要があり、アクリル樹脂型枠(比重約 1.6)を使用した。 しかし、アクリル製の試験体枠は前報で使用したアルミ ニウム製の試験体枠よりも生じた収縮力によるひずみが 大きくなり、試験体枠に反りが生じる恐れがあるので、 断面積を大きくする必要がある。そこでいくつかの試作 による検討を行い、試験体枠を図1のようにした。

3. 不飽和ポリエステル樹脂の収縮力の測定

3.1 試料

試料には、反応性の異なる3種類の不飽和ポリエステ ル樹脂を用いた。硬化剤は、一般に不飽和ポリエステル 樹脂に使用されるメチルエチルケトンパーオキシド (MEKP055%)を用い、添加量は不飽和ポリエステル樹脂 の重量に対し1.0%とした。温度20 で28日養生した資 料の応力-ひずみ曲線を図2に示す。

3.2 収縮力測定

3.2.1 測定方法

測定装置を図3に、測定状況を写真1に示す。測定は、 まず20の恒温槽に測定装置を設置し、基剤と硬化剤を 混合させ装置に流し込んだ直後から1時間ごとに収縮力 が一定になるまで行った。なお、容器と試験体枠との間 にグリースを塗布し、両者の接触を防止した。また、試 験体枠内の両側面にもグリースを塗布し、液体との接触 を避け、一軸方向の収縮力のみの測定を行った。硬化に 伴い発生する収縮力は、試験体枠に貼り付けたゲージに より測定した。なお、この試験体枠に貼り付けたゲージ

Measurement of the Shrinkage stress in Hardening Process of FRP Waterproofing Layer

正会員	表	淳珠 1*
同	辻	修也 2**
同	田中	享二 3***

写真1 収縮力の測定状況

Soonju PYO, Shuya TSUJI, and Kyoji TANAKA

は各々の試験体枠ごとに実験前に圧縮荷重と出力の関係 を実測してあり、ひずみから収縮力を換算している。

3.2.2 測定結果及び考察

測定結果を図 4 に示す。基剤と硬化剤の混練開始後、 1,2 時間から収縮力が観測され始めた。収縮力の発生は、 初期では著しいが時間の経過とともに緩慢となった。ま た、樹脂単体の収縮力は、各々の試料のヤング係数にほ ぼ比例し、収縮力の値が一定になる時間は樹脂の種類に より異なった。

- 3.3 収縮量との関係
- 3.3.1 測定方法

収縮量の測定は、収縮力の測定と同様に樹脂に対する 下地からの拘束を除去して行う必要がある。そこで、図 5 に示すように、メタタングステン酸ソーダの上に試料を 流し込んだ。測定は、この容器を温度 20 一定の恒温槽 に設置し、1時間ごとに 48 時間まで行った。なお、容器 の側面にはグリースを塗布し、試料が容器に接触するの を防止し、試料が一方向にだけ収縮するようにした。

3.3.2 測定結果及び考察

結果を写真2及び図6に示す。不飽和ポリエステル樹脂 の収縮量は、試料の種類に関係なくほぼ同じ値を示した。 そして、一般に収縮力は収縮量とヤング係数を用いて推 測されるので、それに従い収縮力を求めた。その結果、 収縮量から求めた収縮力は、開発した装置から得られた 収縮力より過大に見積もられた。これは、硬化途中の応 力緩和が考慮されていないためである。従って、収縮力 評価にはこのような装置での実測が不可欠であると思わ れる。また、図6において、収縮量は、すべての試料に おいて約17時間でほぼ一定になった。しかし、図4に 見られる収縮力は17時間以降も増加し、試料ごとに収 縮力が一定になる時間が異なった。これは、約17時間 経過した樹脂はほぼ硬化しており、わずかな収縮量でも 大きな収縮力が生じるためであると考えられる。すなわ ち、収縮力が完全に終了したかどうかの判断は、収縮量 の測定より収縮力の測定の方がより感度よく知ることが できると思われる。

4. 結論

1) 縮力の発生は、初期に著しく、時間の経過とともに 緩慢となることを示した。また、収縮力の大きさ及び収 縮力が一定になる時間は樹脂種類により異なることを明 らかにした。

2) 収縮力が完全に終了したかどうかの判断は、収縮量よ り、収縮力の実測による評価方法が、より感度よく知 ることができることを示した。

1)辻 修也他:FRP複合防水層の下地不連続部分における耐疲労性能その2
(日本建築学会大会学術講演梗概集 1992年8月)

*東京工業大学 大学院生

**双和化学産業(株)

***東京工業大学建築物理研究センター 教授・工博

試料2 -20 Ē 収縮力・ -30 -40 試料1 -50 -60 10 20 30 40 50 60 70 80 0 時間 (h) 図4 樹脂の収縮力測定結果 330 固定範囲=30mm 270 ィ グリース 30 収縮ぐ 140 (単位:mm) ← 不飽和ポリエステル・メタタングステン酸ソー 3± 図5 収縮量測定装置

試料3

10

0

-10

写真2 収縮量の測定結果

*Graduate Student, Tokyo Institute of technology

** SOUWA Chemical Industrial CO., LTD.

**** Prof., Structural Engineering Research Center, Tokyo Institute of technology, Dr. Eng.